Ускорители заряженных частиц — уникальные машины, играющие ключевую роль в фундаментальной науке и прикладных исследованиях. Они помогают заглянуть внутрь материи, создавать новые материалы и лекарства, а также раскрывать тайны Вселенной — от бозона Хиггса до реликтового излучения.
Ускорители заряженных частиц — сложные установки, которые требуют высокой точности работы. Даже небольшое отклонение пучка, сравнимое с долей толщины человеческого волоса, может иметь значение. Чтобы справляться с такими задачами, всё чаще используют методы машинного обучения.
В статье мы расскажем о том, как применяют методов машинного обучения на ускорителях по всему миру. Например, нейронные сети стабилизируют орбиту пучка и оптимизируют параметры ускорителей, обучение с подкреплением используется для управления пучками заряженных частиц в сложных условиях, а байесовская оптимизация помогает решать многокритериальные задачи настройки ускорителей.
Читать далее