Привет! Я Иван Косолапов, тимлид команды ETA/RTA. Мы часть сервиса DataScience и занимаемся анализом данных и машинным обучением для задач навигации в 2ГИС. Наша команда появилась несколько лет назад, чтобы сделать точным прогноз времени в пути на автомобиле. Это важно не только для пользователей нашего навигатора, но и для бизнеса: например, для такси и служб доставки.
Несколько специалистов по машинному обучению объединились с инженерами из команды навигации и создали решение, которое отвечает строгим требованиям по качеству, снизив ошибку на 20 процентов. Недавно мы также помогли сделать так, чтобы автобусы на карте отображались точно, и начали предсказывать время их прибытия на остановки. И это лишь часть задач, над которыми мы работаем.
Сейчас тема AI, машинного обучения у всех на слуху, и со стороны может показаться, что те, кто этим занимается — маги, которые берут нейросети, прикладывают их к правильным местам и все проблемы решаются.
На самом деле применение сложных алгоритмов требует большой подготовительной работы по наведение порядка в процессе разработки, что занимает 90 процентов всего времени, если не больше. Более того, как только процесс налажен, может оказаться так, что никакой дополнительной магии машинного обучения уже и не нужно добавлять.
Под наведением порядка в процессе разработки я подразумеваю решение четырёх задач: выбор правильной метрики, подготовка данных, построение воспроизводимой системы экспериментов, перенос алгоритмов туда, где и проще всего развивать.
Расскажу, как решая эти задачи, мы добились более точного отображения автобусов на карте в 2ГИС, упростив существующую на тот момент сложную систему.
Читать