В этой мини-серии статей я хочу объединить свои заметки для математического кружка о различных необычных, но полезных числовых системах, основанных на парах чисел.
1. В этой статье мы (признаюсь, достаточно занудно) построим из натуральных чисел целые, при этом познакомимся с важнейшими инструментами математики: упорядоченной парой, эквивалентностью и факторизацией.
2. От целых мы перейдём к рациональным числам, которые тоже можно представить в виде пары — рациональной дроби. Главный вопрос на который мы постараемся ответить: «А чего у дробей всё так сложно-то?»
3. Далее мы сконструируем Гауссовы числа и порассуждаем над более общим вопросом: «Что такое число?»
4. Наконец, перейдём от пар к матричным представленим чисел и познакомимся с двойными и дуальными числами, а также числами Эйзенштейна. Кроме того, порассуждаем над сакраментальным вопросом: «Реальная ли мнимая единица?»
5. Вернёмся к двойным и дуальным числам, чтобы использовать их на практике: понять «Как работает формула Бине?» и как научить числа быть неточными.
Впрочем, поскольку материал рассчитан на старшеклассников или младшекурсников, изложение будет неспешным и основательным. В духе туториала или методического пособия.
Начнём с целых чисел