Conventional treatments of Alzheimer's disease, one of the most common forms of dementia, have been largely focused on targeting individual pathological features. However, Alzheimer's disease is a multifactorial disorder driven by multiple, tightly interconnected processes, rendering single-target therapeutic approaches inherently limited. Addressing this challenge, KAIST researchers propose a new strategy that enables the simultaneous regulation of multiple disease-inducing factors simply by rearranging the structural positions of drug candidate molecules without altering their chemical substituents.