by Renata Retkute, William Thurston, Keith Cressman, Christopher A. Gilligan
There is an urgent need for mathematical models that can be used to inform the deployment of surveillance, early warning and management systems for transboundary pest invasions. This is especially important for desert locust, one of the most dangerous migratory pests for smallholder farmers. During periods of desert locust upsurges and plagues, gregarious adult locusts form into swarms that are capable of long-range dispersal. Here we introduce a novel integrated modelling framework for use in predicting gregarious locust populations. The framework integrates the selection of breeding sites, maturation through egg, hopper and adult stages and swarm dispersal in search of areas suitable for feeding and breeding. Using a combination of concepts from epidemiological modelling, weather and environment data, together with an atmospheric transport model for swarm movement we provide a tool to forecast short- and long-term swarm movements. A principal aim of the framework is to provide a practical starting point for use in the next upsurge.