by Mo Yang, Zehou Li, Jing Chen, Yang Li, Ran Xu, Meihua Wang, Ying Xu, Rong Chen, Weiwei Ji, Xiaoxia Li, Jiayu Wei, Zhengrong Zhou, Minjie Ren, Ke Ma, Jiayu Guan, Guoxiang Mo, Peng Zhou, Bo Shu, Jingjing Guo, Yuan Yuan, Zheng-Li Shi, Shuijun Zhang
Middle East respiratory syndrome coronavirus (MERS-CoV) and the pangolin MERS-like coronavirus MjHKU4r-CoV-1 employ dipeptidyl peptidase 4 (DPP4) as an entry receptor. MjHKU4r-CoV-1 could infect transgenic mice expressing human DPP4. To understand the mechanism of MjHKU4r-CoV-1 entry into cells, we determined the crystal structures of the receptor binding domain (RBD) of MjHKU4r-CoV-1 spike protein bound to human DPP4 (hDPP4) and Malayan pangolin DPP4 (MjDPP4), respectively. The overall hDPP4-binding mode of MjHKU4r-CoV-1 RBD is similar to that of MERS-CoV RBD. MjHKU4r-CoV-1 RBD shows higher binding affinity to hDPP4 compared to the bat MERS-like coronavirus Ty-BatCoV-HKU4. Via swapping residues between MjHKU4r-CoV-1 RBD and Ty-BatCoV-HKU4 RBD, we identified critical determinants on MjHKU4r-CoV-1 that are responsible for virus usage of hDPP4. Our study suggests that MjHKU4r-CoV-1 is more adapted to the human receptor compared to the bat HKU4 coronavirus and highlights the potential of virus emergence into the human population.