Добавить новость


News in English


Новости сегодня

Новости от TheMoneytizer

Machine learning-driven assessment of biochemical qualities in tomato and mandarin using RGB and hyperspectral sensors as nondestructive technologies

by Adel H. Elmetwalli, Asaad Derbala, Ibtisam Mohammed Alsudays, Eman A. Al-Shahari, Mahmoud Elhosary, Salah Elsayed, Laila A. Al-Shuraym, Farahat S. Moghanm, Osama Elsherbiny

Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non–destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of fruit quality parameters. This research study aimed to assess the potential of image processing, spectral reflectance indices (SRIs), and machine learning models such as decision tree (DT) and random forest (RF) to qualitatively estimate characteristics of mandarin and tomato fruits at different ripening stages. Quality parameters such as chlorophyll a (Chl a), chlorophyll b (Chl b), total soluble solids (TSS), titratable acidity (TA), TSS/TA, carotenoids (car), lycopene and firmness were measured. The results showed that Red-Blue-Green (RGB) indices and newly developed SRIs demonstrated high efficiency for quantifying different fruit properties. For example, the R2 of the relationships between all RGB indices (RGBI) and measured parameters varied between 0.62 and 0.96 for mandarin and varied between 0.29 and 0.90 for tomato. The RGBI such as visible atmospheric resistant index (VARI) and normalized red (Rn) presented the highest R2 = 0.96 with car of mandarin fruits. While excess red vegetation index (ExR) presented the highest R2 = 0.84 with car of tomato fruits. The SRIs such as RSI 710,600, and R730,650 showed the greatest R2 values with respect to Chl a (R2 = 0.80) for mandarin fruits while the GI had the greatest R2 with Chl a (R2 = 0.68) for tomato fruits. Combining RGB and SRIs with DT and RF models would be a robust strategy for estimating eight observed variables associated with reasonable accuracy. Regarding mandarin fruits, in the task of predicting Chl a, the DT-2HV model delivered exceptional results, registering an R2 of 0.993 with an RMSE of 0.149 for the training set, and an R2 of 0.991 with an RMSE of 0.114 for the validation set. As well as for tomato fruits, the DT-5HV model demonstrated exemplary performance in the Chl a prediction, achieving an R2 of 0.905 and an RMSE of 0.077 for the training dataset, and an R2 of 0.785 with an RMSE of 0.077 for the validation dataset. The overall outcomes showed that the RGB, newly SRIs as well as DT and RF based RGBI, and SRIs could be used to evaluate the measured parameters of mandarin and tomato fruits.

Читайте на сайте


Smi24.net — ежеминутные новости с ежедневным архивом. Только у нас — все главные новости дня без политической цензуры. Абсолютно все точки зрения, трезвая аналитика, цивилизованные споры и обсуждения без взаимных обвинений и оскорблений. Помните, что не у всех точка зрения совпадает с Вашей. Уважайте мнение других, даже если Вы отстаиваете свой взгляд и свою позицию. Мы не навязываем Вам своё видение, мы даём Вам срез событий дня без цензуры и без купюр. Новости, какие они есть —онлайн с поминутным архивом по всем городам и регионам России, Украины, Белоруссии и Абхазии. Smi24.net — живые новости в живом эфире! Быстрый поиск от Smi24.net — это не только возможность первым узнать, но и преимущество сообщить срочные новости мгновенно на любом языке мира и быть услышанным тут же. В любую минуту Вы можете добавить свою новость - здесь.




Новости от наших партнёров в Вашем городе

Ria.city
Музыкальные новости
Новости России
Экология в России и мире
Спорт в России и мире
Moscow.media










Топ новостей на этот час

Rss.plus