by Hyeonuk Woo, Yubeen Kim, Chaok Seok
As of now, more than 60 years have passed since the first determination of protein structures through crystallography, and a significant portion of protein structures can be predicted by computers. This is due to the groundbreaking enhancement in protein structure prediction achieved through neural network training utilizing extensive sequence and structure data. However, substantial challenges persist in structure prediction due to limited data availability, with antibody structure prediction standing as one such challenge. In this paper, we propose a novel neural network architecture that effectively enables structure prediction by reflecting the inherent combinatorial nature involved in protein structure formation. The core idea of this neural network architecture is not solely to track and generate a single structure but rather to form a community of multiple structures and pursue accurate structure prediction by exchanging information among community members. Applying this concept to antibody CDR H3 loop structure prediction resulted in improved structure sampling. Such an approach could be applied in the structural and functional studies of proteins, particularly in exploring various physiological processes mediated by loops. Moreover, it holds potential in addressing various other types of combinatorial structure prediction and design problems.