The need for top-rated deep learning software is increasing as the focus on advanced artificial intelligence and machine learning solutions continues to grow. Deep learning is one of the most promising fields in artificial intelligence, revolutionizing industries in various industries, including healthcare, finance, robotics, and self-driving cars.
By 2025, deep learning technology is predicted to have a global market revenue of $10.2 billion. This figure suggests that deep learning will see even more widespread adoption in the future. To help you stay ahead of your competition and develop AI models to enhance your business, we analyzed the best deep learning software currently leading the market.
Jump to:
Best for | Community support | Written in | Platform/OSs | Pricing | |
---|---|---|---|---|---|
PyTorch | Deep learning research and prototyping | Yes | Python, C++ | Linux; macOS; Windows | Free |
TensorFlow | High-level model development | Yes | Python, C++ | Linux, macOS, Windows, Android, JavaScript | Free |
H2O.ai | Building AI models and applications | Yes | Java | Linux, OS X, or Windows | Offers free and proprietary tools |
Keras | Beginners and researchers | Yes | Python | Ubuntu, Windows, macOS | Free |
Neural Designer | Building predictive models | Standard support | C++ | Microsoft Windows, OS X, Linux | $2,495 per user per year |
Gensim | Natural language processing (NLP) tasks | Yes | Python | Linux, Windows, macOS | Free |
Caffe | Deep learning framework for speed | Yes | C++ | Linux, macOS, Windows | Free |
Apache SINGA | Heterogeneous computing environments | Yes | Python, C++, Java | Linux, macOS, Windows | Free |
Deeplearning4j | Java-based projects | Yes | C, Java, C++, Scala | Linux, macOS, Windows, Android, iOS, CUDA, x86, ARM, PowerPC | Free |
Apache MXNet | Large scale deep learning and flexibility | Yes | C++, Python, R, Java, Julia, JavaScript, Scala, Go, Perl | Windows, macOS, Linux | Free |
PyTorch is an open source machine learning (ML) framework based on Python and Torch library and is used for building deep learning models such as computer vision and natural language processing. It was originally developed by Meta AI, but it’s currently part of the Linux Foundation. The PyTorch ecosystem includes many high-level APIs and tools that simplify tasks like data loading, natural language processing, and reinforcement learning.
PyTorch is free to install and use.
For more information, also see: Best Machine Learning Platforms
TensorFlow is an end-to-end open-source machine learning framework developed by the Google Brain team. TensorFlow is used to facilitate the development of deep learning models. It provides an ecosystem of tools, libraries, and resources, enabling researchers and developers to build and deploy machine learning applications efficiently.
TensorFlow is free, open-source software.
On a related topic: Top Natural Language Processing Companies
H2O.ai is a fully open source, distributed in-memory machine learning platform that supports widely used statistical & machine learning algorithms, including gradient boosted machines, generalized linear models, and deep learning. Its Driverless AI tool, which is an automated machine learning platform, uses advanced algorithms and techniques to automate various steps in the machine learning workflow, including feature engineering, model selection, hyperparameter tuning, and model interpretation.
The H2O.ai platform has an open-source, freely available version. This version includes the core functionality of H2O and allows users to build models using a wide range of algorithms. H2O.ai also offers enterprise-level solutions and services, which may have additional pricing considerations. For instance, the H2O.ai AI Cloud costs $50,000 per unit, you must buy a minimum of four units.
Also see: Best Artificial Intelligence Software 2023
A top deep learning software worth considering is Keras. It stands out for its simplicity and ease of use. Keras, a Python-based deep learning library, was developed to enable fast experimentation and ease of use for building and training deep neural networks. It works as an interface for the machine learning platforms TensorFlow and Theano. These types of tools are expanding as artificial intelligence and generative AI sees dramatic growth.
Keras is available for free.
Also see: Top Generative AI Apps and Tools
Neural Designer is an AI platform that allows you to build AI-powered applications without without creating block diagrams or coding. This deep learning software can be used to discover relationships, recognize patterns, and predict trends from your data. Neural Designer is used extensively in several industries, including environment, banking, energy, insurance, healthcare, manufacturing, retail and engineering.
Neural Designer offers various pricing plans for different categories of users.
Standard licenses
Academic licenses
Training programs
Also see: Generative AI Startups
Gensim is an open-source Python library designed for topic modeling and natural language processing (NLP) tasks. For context, topic modeling is a technique used to discover hidden thematic structures in large collections of text documents. Gensim allows you to analyze, compare, and interpret large collections of textual data by enabling the creation of high-quality semantic representations.
Gensim provides implementations of popular topic modeling algorithms, such as Word2Vec, Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), and others, for topic modeling and natural language processing tasks.
Gensim is a free deep learning software licensed under the OSI-approved GNU LGPLv2.1 license, making it free for both personal and commercial use.
For more information: AI vs. ML
Caffe is an open-source deep learning framework developed by Berkeley AI Research (BAIR) and community contributors. Yangqing Jia created the project during his Ph.D. at UC Berkeley. It is written in C++ and provides a Python interface for ease of use. Caffe is designed to be efficient and flexible, allowing users to define, train, and deploy deep learning models for tasks such as image classification, object detection, and segmentation. It has gained popularity for its speed and ease of use in training and deploying convolutional neural networks (CNNs).
This deep learning software is mainly used for academic research projects, startup prototypes, and large-scale industrial applications in vision, speech, and multimedia.
Caffe is released under the BSD 2-Clause license, making it free to use.
Also see: Generative AI Companies: Top 12 Leaders
Apache SINGA is an open-source deep learning library and distributed training framework. The project was designed to support and accelerate the training of large-scale machine learning models, particularly deep learning neural networks, across distributed computing resources. The deep learning software stack includes three major components: core, IO and model. It is widely used by various companies, including National University Hospital, Net Ease, Foodlg and more.
It is free to use.
Also see: 100+ Top AI Companies 2023
Released under Apache License 2.0, Deeplearning4j (DL4J) is an open-source, distributed deep learning library written for Java and Java Virtual Machine (JVM) languages. DL4J includes implementations of various deep learning architectures, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. The library supports distributed computing using Apache Hadoop and Apache Spark. This allows users to leverage multiple machines and GPUs to speed up the training process and handle large-scale data sets.
It is free to use.
MXNet is an open-source deep learning framework used for training and deploying artificial neural networks. It is designed to scale from large clusters of GPUs to multiple machines, and it supports various programming languages such as Python, R, Scala, and Julia. MXNet provides automatic differentiation, a crucial feature for training deep learning models, enabling the computation of gradients based on the model’s parameters.
It is free to use.
For more information, also see: Top AI Software
When shopping for the best deep learning software for your business, keep in mind that the best tool for you depends on your unique business needs. There are best practices to follow when looking for the best deep learning software that, if followed rigorously, will lead you to the best deep learning software for your organization.
Before making a final decision, make sure to read reviews and testimonials from other businesses that have used the software.
To determine the top-rated deep learning software, we conducted extensive research to identify the best deep learning software that is currently popular and widely used in various industries. Our research process involved studying user reviews, expert opinions, and industry reports to gather insights into the performance, features, and user satisfaction of different software solutions.
We evaluated the available tools based on six key data points: usability and user interface, range and flexibility of algorithms, compatibility with popular deep learning frameworks, scalability and performance, availability of support and documentation, and overall user experience.
We then ranked the best deep learning software based on their performance against the criteria and user feedback.
The best deep learning software depends on your specific needs and preferences. We analyzed several popular and high-performing deep learning software, each with its strengths and limitations – no tool is perfect for every situation.
Still, there is likely a deep learning tool that is the best for your particular use case. If you need more than deep learning software, we also analyzed the top AI as a service companies and their offerings to expand your options beyond this immediate AI sector.
Also see: What is Artificial Intelligence?
The post 10 Best Deep Learning Software 2023 appeared first on eWEEK.