by Moe Kobayashi, Nene Kobayashi, Kyoka Deguchi, Seira Omori, Minami Nagai, Ryutaro Fukui, Isaiah Song, Shinji Fukuda, Kensuke Miyake, Takeshi Ichinohe
Since most genetically modified mice are C57BL/6 background, a mouse-adapted SARS-CoV-2 that causes lethal infection in young C57BL/6 mice is useful for studying innate immune protection against SARS-CoV-2 infection. Here, we established two mouse-adapted SARS-CoV-2, ancestral and Delta variants, by serial passaging 80 times in C57BL/6 mice. Although young C57BL/6 mice were resistant to infection with the mouse-adapted ancestral SARS-CoV-2, the mouse-adapted SARS-CoV-2 Delta variant caused lethal infection in young C57BL/6 mice. In contrast, MyD88 and IFNAR1 KO mice exhibited resistance to lethal infection with the mouse-adapted SARS-CoV-2 Delta variant. Treatment with recombinant IFN-α/β at the time of infection protected mice from lethal infection with the mouse-adapted SARS-CoV-2 Delta variant, but intranasal administration of recombinant IFN-α/β at 2 days post infection exacerbated the disease severity following the mouse-adapted ancestral SARS-CoV-2 infection. Moreover, we showed that TNF-α amplified by type I IFN signals exacerbated the SARS-CoV-2 infection by stimulating CXCL1 production from macrophages and neutrophil recruitment into the lung tissue. Finally, we showed that intravenous administration to mice or hamsters with TNF protease inhibitor 2 alleviated the severity of SARS-CoV-2 and influenza virus infection. Our results uncover an unexpected mechanism by which type I interferon-mediated TNF-α signaling exacerbates the disease severity and will aid in the development of novel therapeutic strategies to treat respiratory virus infection and associated diseases such as influenza and COVID-19.